HeMGNN: Heterogeneous Network Embedding Based on a Mixed Graph Neural Network

نویسندگان

چکیده

Network embedding is an effective way to realize the quantitative analysis of large-scale networks. However, mainstream network models are limited by manually pre-set metapaths, which leads unstable performance model. At same time, information from homogeneous neighbors mostly focused in encoding target node, while ignoring role heterogeneous node embedding. This paper proposes a new model, HeMGNN, for The framework HeMGNN model divided into two modules: metapath subgraph extraction module and mixing module. In module, automatically generates filters out metapaths related domain mining tasks, so as effectively avoid excessive dependence on artificial prior knowledge. integrates when learning nodes. makes vectors generated according contain more abundant topological semantic provided Rich achieve good downstream tasks. experimental results show that, compared baseline models, average classification clustering has improved up 0.3141 0.2235, respectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

Graph Embedding with Rich Information through Bipartite Heterogeneous Network

Graph embedding has attracted increasing attention due to its critical application in social network analysis. Most existing algorithms for graph embedding only rely on the typology information and fail to use the copious information in nodes as well as edges. As a result, their performance for many tasks may not be satisfactory. In this paper, we proposed a novel and general framework of repre...

متن کامل

Graph Based Convolutional Neural Network

In this paper we present a method for the application of Convolutional Neural Network (CNN) operators for use in domains which exhibit irregular spatial geometry by use of the spectral domain of a graph Laplacian, Figure 1. This allows learning of localized features in irregular domains by defining neighborhood relationships as edge weights between vertices in graph G. By formulating the domain...

متن کامل

HINE: Heterogeneous Information Network Embedding

Network embedding has shown its effectiveness in embedding homogeneous networks. Compared with homogeneous networks, heterogeneous information networks (HINs) contain semantic information from multi-typed entities and relations, and are shown to be a more effective model for real world data. The existing network embedding methods fail to explicitly capture the semantics in HINs. In this paper, ...

متن کامل

GPSP: Graph Partition and Space Projection based Approach for Heterogeneous Network Embedding

In this paper, we proposeGPSP, a novel Graph Partition and Space Projection based approach, to learn the representation of a heterogeneous network that consists of multiple types of nodes and links. Concretely, we first partition the heterogeneous network into homogeneous and bipartite subnetworks. Then, the projective relations hidden in bipartite subnetworks are extracted by learning the proj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2023

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics12092124